Optimization techniques for multivariate least trimmed absolute deviation estimation
نویسندگان
چکیده
منابع مشابه
Least Absolute Deviation Estimation for All-Pass Time Series Models
An autoregressive-moving average model in which all of the roots of the autoregressive polynomial are reciprocals of roots of the moving average polynomial and vice versa is called an all-pass time series model. All-pass models generate uncorrelated (white noise) time series, but these series are not independent in the non-Gaussian case. An approximation to the likelihood of the model in the ca...
متن کاملOrthogonal Least Trimmed Absolute Deviation Estimator for Multiple Linear Errors-in-Variables Model
Orthogonal least trimmed absolute deviation (OLTAD) estimator of the multiple linear errors-in-variables (EIV) model is presented. We show that the OLTAD estimator has the high breakdown point and appropriate properties. A new decimal-integer-coded genetic algorithm(DICGA) and Fast-OLTAD method for solving OLTAD estimators are also proposed. Computational experiments of the OLTAD estimator of t...
متن کاملAnalysis of least absolute deviation
The least absolute deviation or L1 method is a widely known alternative to the classical least squares or L2 method for statistical analysis of linear regression models. Instead of minimizing the sum of squared errors, it minimizes the sum of absolute values of errors. Despite its long history and many ground-breaking works (cf. Portnoy and Koenker (1997) and references therein), the former has...
متن کاملThe Multivariate Least Trimmed Squares Estimator
In this paper we introduce the least trimmed squares estimator for multivariate regression. We give three equivalent formulations of the estimator and obtain its breakdown point. A fast algorithm for its computation is proposed. We prove Fisherconsistency at the multivariate regression model with elliptically symmetric error distribution and derive the influence function. Simulations investigat...
متن کاملWeighted Least Absolute Deviation Lasso Estimator
The linear absolute shrinkage and selection operator(Lasso) method improves the low prediction accuracy and poor interpretation of the ordinary least squares(OLS) estimate through the use of L1 regularization on the regression coefficients. However, the Lasso is not robust to outliers, because the Lasso method minimizes the sum of squared residual errors. Even though the least absolute deviatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Optimization
سال: 2017
ISSN: 1382-6905,1573-2886
DOI: 10.1007/s10878-017-0109-1